Archiv

Archive for September 2009

Telegramm 26: AWI – Arktisches Meereis 2009

Alfred Wegener Institut (AWI): Im Jahre 2009 nur leichte Erholung des arktischen Meereises gegenüber dem Rekordminimum von 2007: http://tinyurl.com/nr9s2m.

Kategorien:Klimawandel, Telegramme

Telegramm 25: Ungewöhnliche Gewitterwolken

Eine ungewöhnliche Formation von Gewitterzellen über dem Mittelmeer:

Kategorien:Telegramme, Wetter

Telegramm 24: Mojib Latif prognostiziert vorübergehende globale Abkühlung

Kategorien:Klimawandel, Telegramme

Telegramm 23: Gewitterstürme auf dem Saturn

Auf dem Ringplaneten Saturn wurden von der NASA-Sonde Cassini langanhaltende Gewitterstürme fotografiert:

Telegramm 22: Geteilte Wetterlage über Europa am 18.September 2009

Wetterlage über Europa bleibt geteilt:

Aus einem Kaltlufttropfen hat sich über Frankreich ein Tiefdruckwirbel mit Auge gebildet:

Kategorien:Telegramme, Wetter

Telegramm 21: Wetterlage am 15.September 2009 – Altweibersommer

Der Altweibersommer steht vor der Tür:

Der Kaltlufttropfen hat inzwischen das westliche Mittelmeer erreicht. Dort reichlich Zufuhr latenter Wärme mit der Folge schwerer Unwetter:

Kategorien:Telegramme, Wetter

Die Gaia-Theorie des James Lovelock

12. September 2009 3 Kommentare

Die Entdeckung

Anfang der 1960er Jahre nahm der englische Wissenschaftler James Ephraim Lovelock an einem Projekt des Jet Proplsion Laboratory (Pasadena, California)der NASA zur Suche nach Leben auf dem Mars teil. Lovelock, ein begabter Erfinder hatte die Aufgabe Instrumente zum Nachweis von Leben für eine geplante unbemannte Marssonde zu entwickeln. Da Leben auf dem Mars sich durchaus vollkommen von irdischem Leben unterscheiden könnte, hielt es Lovelock für sinnvoll, nach möglichst allgeneinen Eigenschaften des Lebens bzw. deren Auswirkungen zu suchen: Leben nimmt unter Energieverbrauch notwendige Stoffe aus seiner Umgebung auf und scheidet Abfallstoffe wieder aus.  Dabei wird zwangsläufig auch die Atmosphäre des betreffenden Planeten verändert. Man müsste demzufolge, allein schon durch eine spektroskopische Untersuchung der Marsatmosphäre, Hinweise auf mögliches Leben finden können, auch ohne Raumschiff mit Instrumenten von der Erde aus.

James_Lovelock_Sandy_Lovelock

James Ephraim Lovelock (geb.1919) Quelle: http://www.ecolo.org/

James Lovelock und seine Kollegin Diane Hitchcock begannen mit der Analyse der chemischen Zusammensetzung der Marsatmosphäre und verglichen sie mit derjenigen der Erde, die ja nun ohne Zweifel ein belebter Planet ist. 

Dabei entdeckten sie einen interessanten Unterschied: Die Atmosphäre des Mars bestand, wie die des anderen, inneren Nachbarplaneten Venus hauptsächlich (zu 95%) aus Kohlendioxid (CO2).Daneben gab es noch etwas Stickstoff (N2, 2,7%), Spuren von Sauerstoff (O2, 0,13%) und das Edelgas Argon (Ar, 1,6%). Ganz anders als auf der Erde, deren Atmosphäre als Hauptbestandteil Stickstoff (N2, 78%), grosse Mengen Sauerstoff (O2, 21%); Argon (Ar, 1%) und in deutlichen Spuren Kohlendioxid (CO2) und Methan (CH4) enthält. 

Mars Hubble cyclone

Mars ist ein Wüstenplanet, verfügt aber auch über grössere Wasser(eis)vorkommen. Auf der Nordhalbkugel sieht man einen Wirbelsturm, ähnlich den Hurrikanen auf der Erde. Quelle: Hubble, NASA

Während sich die Marsatmosphäre danach praktisch im chemischen Gleichgewicht  befand, gab es in der Erdatmosphäre Gase, die leicht miteinander chemisch reagieren können, wie etwa Sauerstoff und Methan und das auch noch in beachtlichen Mengen. Um eine gleichbleibende Konzentration dieser Gase in der Atmosphäre aufrecht zu erhalten, musste es eine aktive Quelle geben, welche ständig die durch chemische Reaktionen verbrauchten Gase nachlieferte. Diese Quelle ist eindeutig das Leben auf der Erde schloss Lovelock.

Gaia, der lebendige Planet

Das Leben auf der Erde hat vor mindestens 3,5 Milliarden begonnen, wie Mikrofossilien in den ältesten auffindbaren Gesteinen belegen und in dieser Zeit die Zusammensetzung der Atmosphäre tiefgreifend verändert.   

Earth Gaia 1

Die Erde, Natural Color RGB: Diese Bilder werden in 3 Wellenlänenbereichen aufgenommen:rot, gün und blau. Vegetation erscheint grün, da das Chlorophyll der Pflanzen grün deutlich besser reflektiert als rot und blau. Wolken aus kleinen Wassertröpfchen reflektieren alle Wellenlängen und sind daher hellweiss,  Eiswolken  jedoch cyanblau, weil  Eis rotes Licht stark absorbiert. Der unbewachsene Boden erscheint braun, denn rot wird besser reflektiert als blaues. Die Ozeane absorbieren alle Wellenlängen und sind daher beinahe schwarz. Quelle: MeteoSat, EUMETSAT

Algen und später auch Landpflanzen entfernten durch Photosynthese (Umwandlung von Sonnenenergie in energiereiche organische Verbindungen unter Verwendung vonKohlendioxid und Wasser) Kohlendioxid (CO2) direkt aus der Atmosphäre und setzten Sauerstoff (O2) als Abfallprodukt frei. Wie Lovelock gemeinsam mit der amerikanischen Mikrobiologin Lynn Margulis herausfand, beschleunigen Bakterien und Landpflanzen bei ihrer Atmung (s.u.) die unter feuchten Bedingungen (Regenwasser mit gelöstem CO2, Kohlensäüre) stattfindende (natürliche) chemische Gesteinsverwitterung (um das 1000 fache!), indem sie Säuren freisetzen und das Kohlendioxid (CO2) am Boden konzentrieren. Die dabei gebildeten Carbonate (und Silikate) gelangen in Wasser gelöst in die Ozeane, wo sie in Kalkschalen von ein- und mehrzelligen Meeresorganismen eingebaut werden, um nach deren Tode bis auf weiteres am Meeresgrund abgelagert zu werden.Im Rahmen der Plattentektonik gelangen die Carbonate durch Subduktion (Untertauchen einer Erdkrustenplatte unter die andere) ins Erdinnere und werden aufgeschmolzen. Das dabei freigesetzte Kohlendioxid (CO2) löst sich im Magma. Über Vulkane und Sea-floor spreading(tektonischer Prozess bei dem durch aufsteigendes Magma Erdkrustenplatten auseinandergeschoben werden und gleichzeitig neuer Meeresboden entsteht) kehrt es später dann wieder in die Erdatmosphäre zurück. Der Kohlenstoffkreislauf ist damit geschlossen.

Es gibt auch Bakterien, die andere abgestorbene Organismen zerlegen und dabei aus den abgebauten organischen Verbindungen die Gase Kohlendioxid (CO2) und Methan (CH4) freisetzen. Bei diesem Fäulnisprozess wird aber nicht der gesamte  Kohlenstoffs in gasförmiger Form in die Atmosphäre entlassen, sondern ein kleiner Teil in fester oder flüssiger Form deponiert und so dem Kohlenstoffkreislauf (vorerst) entzogen. Auf diese Weise entstanden auch die fossilen Brennstoffe Kohle und Erdöl. Zuweilen werden Methan und andere flüchtige Kohlenwasserstoffe auch als Erdgas unterirdisch mit eingeschlossen.

Das Leben gestaltet also aktiv die Zusammensetzung der Erdatmosphäre und bietet damit gleichzeitig die Voraussetzungen für mindestens drei Lebensweisen:

Pflanzen, Algen und bestimmte Bakterien, die unter Nutzung der Sonnenenergie aus Wasser (H2O) und Kohlendioxid (CO2) energiereiche organische Verbindungen herstellen und aus diesen durch Vergärung oder durch Atmung, also die kalte Verbrennung mit Sauerstoff (O2) die zum Leben notwendige Energie gewinnen;

Fäulnisbakterien (methanogene Bakterien), die unter Freisetzung von Methan (CH4) und Kohlendioxid (CO2) durch Zersetzung organischer Verbindungen abgestorbenen Lebewesen Energie gewinnen und

Konsumenten (Tiere), die andere Lebewesen oder ihre Ausscheidungen fressen und die enthaltenen organischen Verbindungen durch Atmung verwerten (kalte Verbrennung mit Sauerstoff (O2)).

Gleichzeitig beeinflusst das Leben, indem es ganz wesentlich die Zusammensetzung der Atmosphäre bestimmt, aber auch die Temperatur und sorgt dafür, dass sie im lebensfreundlichen Bereich bleibt.

Alles keine Selbstverstänlichkeit, denn es ist keinesfalls so, dass die Erde durch einen glücklichen Zufall von Anfang die Sonne in einem Abstand umrundete, so dass der Planet stets die richtige Strahlungsenergie bekam, um milde Temperaturen aufrecht zu erhalten, die dem Leben förderlich waren.

Ganz im Gegenteil, als das Leben vor mehr als 3,5 Milliarden Jahren begann (s.o.), war die Leuchtkraft der Sonne um beinahe 1/3  geringer als heute. Unter diesen Bedingungen hätte der Planet eigentlich komplett zugefroren sein müssen. Stattdessen tummelte sich aber schon das erste Leben in Form von Bakterien und Algen in flüssigen Ozeanen. Seitdem hat die Leuchtkraft der Sonne kontinuierlich zugenommen. Das ist ganz normal im Lebenslauf eines durchschnittlichen Sterns wie der Sonne. Durch die energieliefernden Kernfusionsprozesse im Sonneninneren werden Wasserstoffatomkerne fortlaufend in die schwereren Heliumatomkerne umgewandelt. Die Dichte im Sonnenkern nimmt zu, der sich daraufhin unter dem Einfluss der Schwerkraft langsam immer weiter zusammenzieht. Dabei steigen Kerntemperatur, Kernfusionsrate und infolgedessen auch die Leuchtkraft der Sonne.

Das die Erde in der Anfangszeit des Lebens wegen der schwachen Sonne nicht zugefroren war lag am überreichlich vorhandenen Kohlendioxid (CO2), das als Treibhausgas die Erde so warm hielt, dass Wasser in flüssiger Form auf der Oberfläche des Planeten existieren konnte. Hinzu kam später noch Methan (CH4), ein wesentlich stärkeres Treibhausgas als Kohlendioxid (CO2), das von den methanogenen Bakterien durch Zersetzung abgestorbenen Lebens freigesetzt wurde (s.o.). Methan (CH4) ersetzte bis zu einem gewissen Grade das Kohlendioxid ( CO2), welches durch die von Bakterien und Landpflanzen beschleunigte chemische Verwitterung aus der Atmosphäre entfernt wurde und verhinderte so eine zu starke Abkühlung der Erde durch den beschleunigten CO2-Schwund.

Bei der Photosynthese wurden grössere Mengen Sauerstoff (O2) frei, die jedoch zunächst (fast) vollständig durch reduzierende Substanzen (Wasserstoff (auch in organischen Verbindungen), Eisen u.a.m.) an der Erdoberfläche gebunden wurden. Später reicherte sich der Sauerstoff (O2) in der Atmosphäre an, wo es für das meiste Leben tödlich wirkte. Erst das Aufkommen sauerstoffatmender Pflanzen und der Konsumenten brachte Erleichterung. Diese waren in der Lage den Sauerstoff zur Energiegewinnung aus organischen Substanzen zu nutzen, was wesentlich effektiver ist als diese einfach nur zu vergären. bei der Atmung findet im Gegensatz zur Gärung ein vollständiger Abbau (bis zu Kohlendioxid und Wasser) statt, wobei mehr Energie frei wird. Die methanbildenden Bakterien, die überhaupt keinen Sauerstoff ( O2) vertrugen, zogen sich in sauerstofffreie Nischen im Untergrund zurück (z.B. Sümpfe). Später besiedelten sie auch die Därme von Tieren.

Dem Leben auf der Erde gelang  jedenfalls das Kunststück, immer soviel von den Treibhausgasen Kohlendioxid (CO2) und Methan (CH4) aus der Atmosphäre zu entfernen, wie notwendig war, eine Überhitzung des Planetens durch die zunehmende Leuchtkraft der Sonne zu vermeiden. Eine mehr als bemerkenswerte Tatsache, die so zu erklären ist:

Wird es wärmer, so wachsen Algen, Bakterien und Landpflanzen besser. Durch gesteigerte Photosynthese der Algen und Landpflanzen wird mehr Kohlendioxid (CO2) aus der Atmosphäre „abgepumpt“. Wegen der erhöhten Wasserverdunstung fällt mehr (kohlensaurer)Regen, was zusammen mit der grösseren Aktivität von Bodenbakterien und Landpflanzen die chemische Verwitterung beschleunigt und so den CO2-Gehalt der Atmosphäre weiter verringert. Der Rückgang des Teibhausgases Kohlendioxid (CO2) bringt dann die Abkühlung. Dieser Mechanismus funktioniert natürlich auch umgekehrt.

Das Leben auf der Erde kontrolliert also die Atmosphäre, die Temperatur und damit auch das Klima. es sorgt dafür das der Planet trotz sich verändernder Sonneneinstrahlung bis heute lebensfreundlich blieb. Für James Lovelock bildet die Erde mit ihren Lebensformen eine Art Superorganismus, der sich selbst reguliert, um seine Weiterexistenz zu sichern. Lovelock  nannte diesen Superorganismus Erde „Gaia“, die lebendige Erde, so wie es ihm sein Nachbar und Freund, der Schriftsteller William Golding vorgeschlagen hatte, nach der griechischen Erdgöttin. Im Jahre 1979 machte Lovelock seine neue Gaia-Theorie mit dem Buch „Gaia: A New Look at Life on Earth“ einer breiten Öffentlichkeit bekannt.

Lovelock entdeckte später noch weitere Rückkopplungen, mit denen Gaia für lebensfreundliche Bedingungen sorgt.

Da wäre beispielsweise die Sache mit dem Salzgehalt der Ozeane.  Für Meeresorganismen ist das im Meereswasser gelöste Salz eine echte Herausforderung. Der Salzgehalt liegt bei knapp 3,5%. Damit kommen sie noch zurecht. Schon bei etwas über 4% würde allerdings die elektrische Ladung der gelöstenSalzionen den Zusammenhalt der Zellmembranen gefährden, welcher ebenfalls auf elektrischen Kräften beruht. Dasselbe gilt für die Funktionstüchtigkeit wichtiger Enzyme des Stoffwechsels. Bei einem noch höheren Salzgehalt würden (fast) alle Meereslebewesen absterben. Doch es hat zumindest während der letzten 500 Millionen Jahre niemals ein Massenaussterben wegen zuviel Salz gegeben. Stattdessen lag der Salzgehalt der Ozeane immer um die gut verträglichen 3,5%. Das ist schon erstaunlich, wenn man bedenkt das durch chemische Verwitterung und Sea-floor spreading ein ständiger Salzeintrag stattfindet. Auch hier ist wieder ein selbstregulierender Mechanismus am Werke.  Mikrorganismen des Meeres mit Schalen aus Kieselsäure nehmen über ihre Zelloberflächen in Wasser gelösten Salze auf, um nach ihrem Tode abzusinken und so die überschüssigen Salze so auf dem Meeresboden zu deponieren. Insgesamt stellen Mikroorganismen nur 10-40% der Biomasse in den Ozeanen, doch wegen ihrer grossen Oberfläche im Vergleich zum Volumen 70-90& der biologisch aktiven Oberflächen.

Um mit dem normalen Salzgehalt von 3,5% fertig zu werden, benutzen vor allem mehrzellige Meeresorganismen membranständige Pumpen mit denen sie eindingende Salzionen wieder aus ihren Zellen herausbefördern. Da dies energetisch sehr aufwendig ist, behelfen sich die einzelliegen Meeresalgen auf andere Weise.  Sie bilden Dimethylsulfonpropionat (DMSP), eine ionische Verbindung, deren Molekül eine positive und eine negative Ladung enthält, welche sich beide aber nach aussen hin neutralisieren. Daher ist DMSP für die Algen unschädlich. Indem sie  Salze durch DMSP ersetzen halten die Meeresalgen ihren Salzgehalt niedrig, denn DMSP verringert den osmotischen Druckgradienten zwischen Meerwasser und Zellinnerem. Sterben Meeresalgen ab, so wird DMSP freigesetzt und im Wasser bakteriell abgebaut. Dabei entsteht gasförmiges Dimethylsulfid (DMS). DMS gelangt an die Luft und wird durch den atmosphärischen Sauerstoff (O2) zu Sulfaten oxidiert. Diese ziehen als Sulfataerosole Wasser an und wirken dadurch  als Kondensationskeime für die Wolkenbildung . Dadurch bilden sich mehr Wolken mit kleineren Wassertröpfchen, die das Sonnenlicht verstärkt reflektieren und so direkt abkühlend wirken.

CLAW_hypothesis_graphic_1_AYool 

Meeresalgen fördern die Wolkenbildung. Quelle: Wikipedia

Die intensivierte Wolkenbildung begünstigt darüber hinaus durch Freisetzung von mehr latenter Wärme die Entstehung von Tiefdruckwirbeln. Deren Winde durchmischen die oberen und unteren Wasserschichten und verbessern so wiederum die Mineral- und Nährstoffzufuhr für die Meeresalgen und andere Meeresorganismen.  

Daisyworld

Die Gaia-Theorie erweckte grosses Aufsehen in der Öffentlichkeit und löste kontroverse Debatten unter den interessierten Wissenschaftlern aus. Kritiker wandten ein, eine Selbstregualtion der Erde erfordere eine Absprache aller beteiligten Lebewesen, also absichtsvolles Handeln. Das sei ein absurder Gedanke, ein absoluter Widerspruch zur Darwinschen Evolution durch zufällige (genetische) Variationen, Anpassung und Selektion.

Um dieser Kritik zu begegnen entwickelte Lovelock das Daisyworld-Modell, um zu zeigen wie die Selbstregulation eines Planeten auch ohne bewusste Absicht seiner Bewohner funktionieren kann.

Daisyworld ist ein durch mathematische Gleichungen beschriebener Modellplanet, der in seinen Eigenschafte der Erde ähnelt. Allerdings existieren auf ihm nur zwei Lebensformen, helle und dunkle Gänseblümchen (Daisies). Die Gänseblümchen können nur in einem Temperaturbereich zwischen +5°C und +40°C überleben. Optimal sind 22°C. Der Planet umrundet einen durchschnittlichen Stern, dessen Leuchtkraft wie bei der Sonne allmälich zunimmt.

Die hellen Daisies reflektieren das Sonnenlicht und kühlen sich damit ab, die dunklen Daisies absorbieren das Sonnenlicht und halten sich damit warm. Das Wachstum beider Arten hängt von den herrschenden Temperaturverhältnissen, der Populationsdichte, dem noch vorhandenen unbewachsenen Flächen und der natürlichen Lebensdauer der Pflanzen ab. Lovelock benutzte dafür Gleichungen, die das Leben wirklicher Gänseblümchen (Daisies) angemessen beschreiben. Die Wachstumsrate der beiden Arten passen sich den jeweils herrschenden Verhältnissen an.

Zunächst ist der Planet zu kalt und es gab kein Leben. Ist die Leuchtkraft der Sonne hoch genug, um auf Daisyworld +5°C zu erreichen entwickeln sich in der Äquatorregion die ersten dunklen Daisies, die es verstehen sich ausreichend warm zu halten. Ist ihre Anzahl gross genug, so erwärmen sie durch ihre den gesamten Planeten, dessen Albedo abnimmt. Die hellen Daisies haben allerdings noch keine Chance. Mit zunehmender Leuchtkraft der Sonne und fortschreitender Erwärmung breitet sich die dunkle Variante in Richtung der Pole aus und bald erscheinen am Äquator auch die ersten hellen Daisies, die hier nach und nach wegen ihrer kühlenden Eigenschaften einen Vorteil bekommen. In den gemässigten Breiten mit optimaler Temperatur koexistieren helle und dunkle Daisies. Wird der Planet noch wärmer, so ziehen sich die dunklen Daisies in die Polregionen zurück, während die helle Variante den übrigen Planeten beherrscht, seine Albedo erhöht und ihn deshalb abkühlt. Über die gesamte Zeit, in der die gesamte Planetenoberfläche bewohnt ist, halten sich auch die Temperaturen in einem lebensverträglichen Bereich. Mit noch weiter fortschreitender Erwärmung wird die Äquatorregion von Daisyworld zu heiss und unbewohnbar. Es verbleiben die hellen Daisies die sich immer weiter in die Polregionen zurückweichen müssen. Schliesslich wird die Population der hellen Daisies so gering, dass sie den Planeten nicht mehr ausreichend kühlen können. Der gesamte Planet wird zu heiss und stirbt.

daisyworld

Der Modellplanet Daisyworld mit Leben kann trotz zunehmender Leuchtkraft der Sonne über einen langen Zeitraum milde, lebensfreundliche Temperaturen aufrecht erhalten. Ohne Leben gelingt ihm das nicht.

Trotzdem gelingt es Daisyworld mit seinen hellen und dunklen Daisies über einen langen Zeitraum lebensfreundliche Temperaturen aufrecht zu erhalten, was ohne Leben niemals möglich wäre.

Das Daisyworld-Modell zeigte eindrücklich, dass prinzipiell ein lebendiger Planet selbst für lebensfreundliche Bedingungen sorgen kann, ganz ohne bewusste Absicht! Erst wenn die Leuchkraft der Sonne einen kritischen Wert überschreitet ist das System mit der Selbstregulation überfordert und bricht zusammen. Obwohl alle Lebewesen nur mit dem eigenen Überleben beschäftigt sind, dienen sie wie von einer Unsichtbaren Hand gelenkt dem Gesamtwohl des Planeten.

Auch realitätsnähere Varianten von Daisyworld in denen mehr Gänseblümchenarten vorkommen, aber auch Pflanzenfresser und Fleischfresser, welche sich wiederum von den Pflanzenfressern ernähren, funktionieren einwandfrei.

Gaia und Klimawandel

Die Gaia-Theorie ist auch für die laufende Diskussion über den menschengemachten Klimawandel durch die fortgesetzte Emission fossiler Brennstoffe von hohem Erkenntniswert.  Der Erde ist es vor allem durch das Abpumpen und des Treibhausgases Kohlendioxid (CO2) aus der Atmosphäre gelungen, einer Überhitzung infolge der immer weiter ansteigenden Leuchtkraft der Sonne zu entgehen. Und genau dieses Kohlendioxid (CO2) setzt die Menschheit jetzt wieder durch die Nutzung fossiler Brennstoffe im Rekordtempo frei. Das sollte eigentlich auch die Klimaskeptiker nachdenklich stimmen, die immer wieder behaupten, die Sonne bestimme (fast) allein das Klima und bei der Sache mit den Treibhausgasen handele es sich um ein Scheinproblem!

In den Abschätzungen des International Panel on Climate Change (IPCC,  http://www.ipcc.ch/) wird von einem allmälichen Temperaturanstieg bei zunehmender Treibhausgaskonzentration ausgegangen. Vergleicht man etwa die Projektionen des IPCC mit der seitdem tatsächlich stattgefundenen Entwicklung, so befinden wir uns derzeit nahe dem oberen Rand dieser Szenarien. das gilt nicht nur für die global gemittelte Temperatur, sondern auch für den globalen Meeresspiegelanstieg.

Rahmstorf Obs vs Proj

Mit einem Klimamodell, das auf den Prinzipien von Daisyworld basiert, aber auch den entscheidenden Einfluss der Meeresalgen (Beeinflussung der Wolkenbildung) und Landpflanzen (Abpumpen des CO2) auf das Klima  mit einbezieht, fand Lovelock schon im Jahre 1994 heraus, dass sich der Klimawandel zu einer wärmeren Welt nicht langsam und gemächlich, sondern sehr abrupt vollziehen könnte.

Überschreiten die Wassertemperaturen der Ozeane einen kritischen Wert so nimmt die Dichte der oberen Schichten derart ab, dass sich eine stabile Schichtung ausbildet (Stratifizierung). Ein Austausch mit den mineral- und nährstoffreichen Schichten ist dann kaum mehr möglich. Die Meeresalgenpopulationen, die ja nur in den oberen Schichten existieren können, wo es hell genug für ihre Photosynthese ist, sterben zu grossen Teilen ab.

Lovelock Kemp Abstract

In dem Klimamodell von Lovelock passierte nun folgendes: Bei einer atmosphärischen CO2-Konzentration von 500 ppm (parts per million) – heute sind es bereits 390 ppm(!)-  erreichten die Wassertemperaturen der Ozeane so hohe Werte, dass die meisten Meeresalgen starben und damit ihre klimaregulierenden, abkühlenden Fähigkeiten verloren. Die Wolkenbedeckung ging zurück, und es kam zu einem abrupten globalen Temperaturanstieg um 6°C ! Ein neues Gleichgewicht stellte sich ein, das auch bei einem weiteren CO2 Anstieg (vorerst) stabil blieb. Die Landpflanzen allein übernahmen nun die Hauptrolle bei der Regulation des Klimas. Ein globaler Temperaturanstieg von 6°C hätte natürlich katastrophale Folgen. Der Meeresspiegel würde vor allem durch das Abschmelzen des Festlandeises in Grönland und in der Westantarktis um mehrere Meter ansteigen und weltweit die meisten Hafenstädte früher oder später in den Fluten versinken.

 Doch Leben auf dem Mars?

Zur allgemeinen Überraschung fanden vor wenigen Jahren der europäische Marssatellit „Mars Express“ und später auch erdgebundene Teleskope beachtliche Mengen an Methan (CH4) in der Marsatmosphäre. Methan (CH4) ist, worauf  Lovelock während seiner Zeit bei der NASA ja bereits hingewiesen hatte, ein sehr reaktives Gas, das mit dem vorhandenen Sauerstoff binnen kurzen zu Kohlendioxid (CO2) und Wasser (H2O) reagiert. Es muss also natürliche Quellen geben, welche ständig Methan (CH4) nachliefern. Das Gas ist interessanterweise nicht gleichmässig in der Marsatmosphäre verteilt, sondern weist ein charakteristisches Muster erhöhter Konzentrationen auf: Genau dort wo es viel Methan(CH4) gibt, treten auch hohe Wasserdampfkonzentrationen und genau dort gibt es auch Wassereisvorkommen unter der Marsoberfläche (http://www.esa.int/esaCP/SEMAK21XDYD_index_0.html)! Es liegt nahe auf die Existenz methanogener Bakterien zu schliessen, die unter dem Eis vielleicht recht erträgliche Lebensbedingungen vorfinden.

Und noch etwas wurde womöglich bisher übersehen. Der Sauerstoffgehalt der Marsatmosphäre ist zwar nur gering, aber immerhin 30.000 mal höher als bei allen anderen Planeten unseres Sonnensystems ausser der Erde. Gibt es auch hier natürliche Quellen? Könnten es Algen sein, die ebenfalls unter schützendem Eis ihr Dasein fristen?

Mars DDS 1

 Algen in der Südpolarregionn des Mars? Quellen: NASA, ESA, Mars Astrobiology Group ( http://www.colbud.hu/esa/), verändert.

Wissenschaftler der ESA (European Space Agency) halten das für möglich. In den Dünenfeldern der Südpolarregion des Mars erscheinen und verschwinden mit dem Wechsel der Jahreszeiten dunkle Flecken, die so genannten “Dark Dune Spots”(DDS) Die Flecken tauchen zu Frühlingsbeginn auf, werden dann kräftiger (Maximum im späten Frühling), um mit dem beginnenden Sommer wieder zu verblassen. Die DDS werden vor allem auf der Südhalbkugel bis hinauf zu -60° SÜD angetroffen, genau dort, wo auch grössere Wassereisvorkommen gefunden wurden.

poster_06_600x849

So könnte der Lebenszyklus möglicherweise algenähnlicher Marsorganismen (Mars Surface Organism, MSO) aussehen. Quelle: http://www.colbud.hu/esa/

Das gleichzeitige Vorhandensein nennenswerter Mengen an Sauerstoff (O2) und Methan (CH4), zwei sehr reaktiver Gase darf nach der Gaia-Theorie als Indiz für Leben auf dem Mars gewertet werden. Allerdings würde es nur ein Leben auf Sparflamme sein, zu schwach, um den Planeten in Richtung lebensfreundlicher Bedingungen zu regulieren, vielleicht die Überreste einer einstigen Gaia auf dem Mars, deren gute Zeit schon vorüber ist.

Jens Christian Heuer

Bücher von James E. Lovelock: 1) Gaia: A New Look at Life on Earth; TB Oxford University Press  2) Ages of Gaia: A Biography of Our Living Earth; TB Oxford University Press (dt. Das Gaia- Prinzip. Die Biographie unseres Planeten.; Insel TB)  3)The Revenge of Gaia: Earth’s Climate Crisis & the Fate of Humanity; Basic Books (dt. Gaias Rache: Warum die Erde sich wehrt; TB Ullstein) 4)The Vanishing Face of Gaia: A Final Warning; Basic Books